Correlation between the equation of state and the pressure dependence of glass transition and melting temperatures in polymers and rare-gas solids

S. Saeki*, M. Tsubokawa, J. Yamanaka and T. Yamaguchi

Department of Materials Science and Engineering, Fukui University, Fukui, 910 Japan (Received 22 November 1990; revised 10 January 1991; accepted 4 February 1991)

A correlation between the equation of state and the pressure dependence of the glass transition temperature T_g in polymers such as polystyrene (PS) and poly(methyl methacrylate) (PMMA) and the pressure dependence of the melting temperature T_m in polymers such as polyethylene (PE), in rare-gas solids such as argon (Ar) and in hydrogen (H_2) has been examined based on the experimental data by Simha, Zoller and Rehage for polymers and Cheng, Mills and Zha for rare-gas solids and an equation of state derived in a previous work. The volume-pressure relation at constant temperature for solid and liquid states is expressed by :

$$
V_x(P_0, T)/V_x(P, T) = A_x(P + P_x)^{m_x}
$$

where $V_x(P_0, T)$ is the volume at constant pressure P_0 and temperature T, $V_x(P, T)$ is the volume at P and T, P_x is a function of temperature, m_x is a constant and the subscript x means a state such as $x = 1$ for liquid and $x = s$ for solid. It is found that values of P_x change discontinuously with increasing temperature in the vicinity of $T_{\rm g}$, while $m_{\rm x}$ changes discontinuously at $T_{\rm m}$ where $P_{\rm x}$ is continuous with respect to temperature. Values of $F_{m,s}$ defined by $F_{m,s} = 1 - V_s(P_m, 0)/V_s(P_m, T_m)$ for a rare-gas solid such as Ar are calculated based on the experimental data and are around 0.09 for Ar, independent of pressure, where $V_s(P_m, T_m)$ is the volume of solid phase at T_m . Values of F_g defined by $F_g = 1 - V_s(P_g, T_0)/V(P_g, T_g)$ at T_{g} are 0.036-0.055 for PS and 0.018-0.036 for PMMA. A three dimensional $P-V-T$ surface over the temperature region including T_{g} and T_{m} is established based on the experimental data.

(Keywords: equation of state; glass transition temperature; melting temperature; polymer; rare-gas solid; solid-liquid critical point; Ehrenfest equation; freezing model)

INTRODUCTION

The phase transition temperatures of solids, such as the glass transition temperature $T_{\rm g}$ and melting temperature T_m , are very important quantities from practical and theoretical points of view. Investigations of the pressure dependence of $T_{\rm g}$ and $T_{\rm m}$ have been done in the rare-gas solids such as argon $(Ar)^{1-5}$ and in hydrogen $(H_2)^{6-10}$, helium (He)^{6,11-14}, nitrogen $(N_2)^{1,15,16}$ and methane¹⁶ at high pressure above 10 kbar for (dT_m/dP) , and in polymers such as polystyrene $(PS)^{17-19}$, poly (methyl methacrylate) (PMMA)²⁰ and others²¹⁻²⁴ for (dT_e/dP) and polyethylene (PE)^{20,25} and others²⁶⁻²⁸ for (dT_m/dP) , where both T_m and T_g increase with increasing pressure. One interesting topic is concerned with the solid-liquid critical point, which has been examined in rare-gas solids experimentally $1, 2, 5, 9, 16, 29$ and theoretically $30, 31$. The other point is related to the glass transition phenomena, where two models, the Ehrenfest model of second-order phase transition and the kinetic freezing model, have been examined theoretically and experimentally^{18,21,24,32,33}.

The main purpose of this work is to examine the correlation between the equation of state derived in the previous work and the phase transition behaviour based

on the experimental data over a wide range of pressure to provide a deeper understanding of transition phenomena in polymer and rare-gas solids.

DERIVATION OF BASIC EQUATION FOR THE *P-V* ISOTHERM IN THE VICINITY OF $T_{\rm g}$ AND $T_{\rm m}$

In previous work the following simple relation was derived from the homogeneous function method. In the liquid state, the relation is given $by³⁴$:

$$
\ln[V_1(P, T)/V_1(1, T)] = -A_1[P + P_1(T)]^{m_1} + B(T)
$$
\n(1a)

while that in the solid state is 3^5 :

$$
V_s(1, T)/V_s(P, T) = A_s[P + P_s(T)]^{m_s}
$$
 (2)

where $V_x(1, T)$ is the volume at atmospheric pressure and temperature T, $P_1(T)$ and $P_s(T)$ are functions of temperature, and A_1 , A_s , m_1 and m_s are constants. If the approximation for equation (1a) that $V(1, T)/V(P, T) =$ $1 + X, X \ll 1$, is used, the following equation is derived :

$$
V_1(1, T)/V_1(P, T) = A_1[P + P_1(T)]^{m_1} \qquad (1b)
$$

because $B(T) = A_1(1 + P_1)^{m_1} \sim A_1 P_1^{m_1}$ and $A_1 P_1^{m_1} = 1.0$

POLYMER, 1992, Volume 33, Number 3 577

^{*} To whom correspondence should be addressed

Equation of state and pressure dependence of T_g *and* T_m *: S. Saeki* et al.

Equation of state and pressure dependence of T_g and T_m : S. Saeki et al.

Table 1 *(continued)*

Figure 1 M_x -t and P_x -t plots for PMMA in equation (3). The data are taken from ref. 20

Figure 2 M_x -t and P_x -t plots for linear PE (\bigcirc) and branched PE (\triangle) in equation (3). The data are taken from ref. 20

from equation (lb) and

$$
\ln V_1(1, T)/V_1(P, T) \sim V_1(1, T)/V_1(P, T) - 1,
$$

which is similar to that of a solid, equation (2). Therefore, the expression of the $P-V$ isotherm for solid and liquid states is **:**

$$
V_x(P_0, T)/V_x(P, T) = A_x[P + P_x(T)]^{m_x}
$$
 (3)

where $x = 1$ for liquid state and $x = s$ for solid state, and P_0 is a constant pressure.

Figure 3 $M_x - T$ and $P_x - T$ plots for Ar in equation (3); T_m is the melting temperature. The data are taken from ref. 3 for $T \ge 110$ K and refs 35 and 38 for $T < 110$ K

RESULTS

The values of m_x and P_x calculated by using equation (3) for various polymers and rare-gas solids are listed in *Table 1.* The typical temperature dependence of m_x and P_r for an amorphous polymer PMMA, a crystalline polymer PE and a rare-gas solid argon (Ar) is shown in *Figures 1, 2 and 3, where it is demonstrated that, at* T_g , P_x decreases discontinuously with increasing temperature and m_x seems to be constant over T_g . On the other hand, m_x changes discontinuously at T_m and P_x decreases continuously but the slope in the P_x-T plot changes from large negative to small negative except for Ar.

It is interesting to determine the free volume fraction at the transition temperature, which is defined in this work by :

$$
F_{y,x} = [V_x(P_y, T_y) - V_s(P_y, T_0)] / V_x(P_y, T_y)
$$
 (4)

System	$F_{y,x}$	T_0 (K)	P_y (kbar)	\mathbf{y}	\boldsymbol{x}	$V_s(P_y, T_0)^a$ (cm ³ g ⁻¹)	Ref.
Ar	0.0855	4.0	0.451	m	${\bf S}$	0.5572	$\mathbf{3}$
	0.0892	$4.0\,$	1.051	m	${\bf S}$	0.5477	3
	0.0897	4.0	1.674	m	S	0.5389	3
	0.0871	4.0	3.805	m	S	0.5151	3
	0.0885	$4.0\,$	5.003	m	${\bf S}$	0.5045	3
	0.0894	4.0	6.335	m	${\bf S}$	0.4944	3
$n-H2$	0.0584	4.0	4.733	m	${\bf S}$	6.824	9
	0.0515	4.0	6.378	m	s	6.417	9
	0.0613	4.0	9.010	m	${\bf S}$	5.964	9
	0.0535	4.0	12.527	m	${\bf S}$	5.554	9
	0.0488	4.0	14.626	m	${\bf S}$	5.369	9
	0.0585	4.0	18.710	m	s	5.086	9
PS ($M_w = 27.9 \times 10^4$, $M_w/M_p = 3.08$)	0.0409	$\bf{0}$	0.001	g	-	0.938	17
	0.0381	$\bf{0}$	0.600	g		0.921	17
	0.0360	$\bf{0}$	1.000	g		0.911	17
	0.0365	$\bf{0}$	1.600	g	$\overline{}$	0.897	17
	0.0390	0	2.000	g		0.888	17
PS ($M_w = 2.05 \times 10^3$, $M_w/M_n = 1.1$)	0.054	$\bf{0}$	0.001	g, M_w		0.909	36
$(M_w = 1.04 \times 10^4)$	0.0537	0	0.001	g, M_w		0.916	36
$(M_w = 1.98 \times 10^4)$	0.0541	$\bf{0}$	0.001	g, M_w		0.917	36
$(M_w = 11.1 \times 10^4)$	0.0524	$\bf{0}$	0.001	g, M_w		0.918	36
PMMA	0.0356	0	0.001	g	$\qquad \qquad$	0.831	20
	0.0290	0	0.400	g		0.826	20
	0.0245	0	1.000	g		0.818	20
	0.0196	$\bf{0}$	1.600	g	\sim	0.811	20
	0.0184	0	2.000	g	$\overline{}$	0.806	20
PSF	0.0551	$\mathbf 0$	0.490	g	$\overline{}$	0.781	21
	0.0571	0	0.981	g		0.771	21
	0.0607	$\bf{0}$	1.471	g	÷	0.761	21

Table 2 Values of $F_{y,x}$ for polymers and rare-gas solids

^aValues of $V_s(P_v, T_0)$ for polymers are obtained using the data of V below T_s

Table 3 Values of C and n_1 in equation (5) for polymers

System	n_{1}	C	V(P, 0)	P (bar)	Ref.
PS	0.0637	1.447	0.9378	1.0	17
	0.0758	1.572	0.9313	200.0	17
	0.0772	1.536	0.9219	600.0	17
	0.0687	1.537	0.9177	1000.0	17
	0.0891	1.472	0.9017	1200.0	17
	0.103	1.641	0.9086	1400.0	17
PMMA	0.0521	7.05	0.831		20
	0.0468	6.99	0.826	400	20
	0.0439	6.99	0.817	1000	20
	0.0351	6.85	0.811	1600	20
	0.0327	6.82	0.806	2000	20
PSF	0.0971	8.11	0.781	491	21
	0.112	8.44	0.771	981	21
	0.139	9.06	0.761	1471	21

where a subscript y means transition temperature and $y = g$ for T_g , $y = m$ for T_m , and $V_x(P_y, T_y)$ is the volume at P_v , T_v and state x. Values of $F_{v,x}$ for H_2 and Ar at T_m calculated by equation (4) and experimental data published are listed in *Table 2*, where it is shown that T_0 is 4.0 K for the rare-gas solids such as Ar and H_2 and an average value of $F_{\text{m,s}}$ is 0.058 for H₂ and 0.0882 for Ar. Evaluation of $V_s(P_v, T_0)$ for solids was made as

follows. It is assumed that the $V-T$ relation at constant pressure is expressed by:

$$
\ln T = C Z^{n_1} \qquad T \geqslant 1 \tag{5}
$$

and

$$
Z = [V(P, T) - V(P, 0)]/V(P, T)
$$
 (6)

where C and n_1 are constants and are listed in *Table 3*. The usefulness of equation (5) is discussed in ref. 35. Values of $V_s(P_g, 0)$ for polymers are estimated from the $P-V-T$ data available and equation (6). The average values of F_g for PS are $\overline{F}_g = 0.038$, while F_g values for PMMA depend on pressure as shown in *Table 2.*

Typical two-dimensional $P-V$ and $P-T$ cross sections in the $P-V-T$ three-dimensional surface near $T_{\rm g}$ and $T_{\rm m}$ observed experimentally are indicated in *Figures 4-6,* where T_g is characterized by the temperature at which the slope in the $P-V$ plot or $(\partial V/\partial P)_T$ in *Figure 4* changes discontinuously and the minimum point in the $P-T$ plot or $(\partial P/\partial T)_V = 0$ in *Figure 5*. On the other hand, in the vicinity of T_m a discontinuous decrease of V with increasing T in the $P-V$ isotherm and a steep rise of P in the P-T isochore shown in *Figure 6* are observed. It is also pointed out that in *Figure 4* the discontinuous points in $(\partial V/\partial P)_T$ are on one $P-V$ isotherm line of T_g at 1 bar. The other point is an inflection point in the

Figure 4 *V-P* isotherms for poly (cyclohexyl methacrylate) at various temperature: (a) 198.9, (b) 147.3, (c) 134.3, (d) 122.7, (e) 109.6, and (f) 64.0°C. Data are taken from ref. 20

vicinity of T_m in the $P-T$ plot, which is quite similar to that in $T_{\rm g}$ in *Figure 5*.

The molecular-weight dependence of T_g for polymers is also examined. The quantity F_{g,M_w} is defined as follows :

$$
F_{g,M_{\mathbf{w}}}(1, T_g, M_{\mathbf{w}})
$$

= $[V(1, T_g, M_{\mathbf{w}}) - V_s(1, 0, M_{\mathbf{w}})]/V(1, T_g, M_{\mathbf{w}})$ (7)

where $V(1, T_g, M_w)$ is the volume at 1 bar, T_g and M_w and $V_s(1, 0, M_w)$ is the volume at 1 bar, 0 K and M_w , which can be estimated by using equation (5) and $V-T$ data for various molecular weights at 1 bar³⁶. Values of F_{g,M_w} for PS at T_g are listed in *Table 2* where it is shown that an average value of $F_{g,M_{\infty}} = 0.053$ obtained from PS with $M_w/M_n = 1.10$ is larger than $F_g = 0.038$ for PS $(M_w/M_n = 3.08)$ from the pressure dependence of T_g .

It is very interesting to examine whether the solid-liquid critical point can be found or not on the basis of the experimental data available, although so far the critical point is not observed. It is examined in this work whether $V_{\text{m},s}/V_{\text{m},1}$ becomes 1.0 at a certain pressure where $V_{\text{m},1}$ is the volume of liquid phase and $V_{\text{m},s}$ is the volume of solid phase at $T_{\rm m}$. It is assumed that the function of $V_{\rm m,1}$, $V_{\rm m,s}$ and V_{g} with respect to pressure under T_{m} or T_{g} lines is expressed by :

$$
V_{y,x}(P=1)/V_{y,x}(P)=A_{y,x}[P+P_{y,x}(T)]^{\mathfrak{m}_{y,x}}
$$
 (8)

where $V_{v,x}$ means the volume at transition temperature $T_{\rm v}$ and phase x. Values of $A_{\rm v,x}$, $P_{\rm v,x}$ and $m_{\rm v,x}$ for polymers and rare-gas solids determined from the experimental data are summarized in *Table 4* and $V_{m,s}/V_{m,1}$ calculated by equation (8) against pressure is shown in *Figure 7,* where the possibility of the solid-liquid critical point for polymer is demonstrated. It is obvious that an amorphous polymer does not have T_m . Therefore a semicrystalline polymer with some fraction of amorphous region may have a critical point with increasing pressure if the amorphous region is more compressible than the crystalline region.

Figure 5 $P-t$ isochore for poly(cyclohexyl methacrylate) at various specific volumes: (a) 0.89, (b) 0.90, (c) 0.91, (d) 0.92, and (e) 0.93 cm³ g⁻¹; T_g is the $P_g - T_g$ line

Figure 6 $P-t$ isochore for linear PE at various specific volumes: (a) 1.02, (b) 1.03, (c) 1.04, (d) 1.05, (e) 1.06, (f) 1.08, (g) 1.18, (h) 1.20 and (i) 1.24 cm³ g⁻¹; T_m is the P_m-T_m line

DISCUSSION

The three-dimensional $P-V-T$ diagram is very useful in discussing the correlation between the equation of state and pressure dependence of $T_{\rm g}$ and $T_{\rm m}$. A schematic *P-V-T* diagram is shown in *Figure 8* where the experimental behaviour in the vicinity of $T_{\rm g}$ and $T_{\rm m}$ shown in *Figures 4-6* is taken into account. It is important to point out that the $P-V-T$ surfaces near T_{g} and T_m are not smooth and are undulated. The behaviour is observed in PS¹ and polysulphone²¹ near T_{g} and in PE^{20} , H₂^{*t*} and ⁴He¹¹ near T_m . It is also found

Figure 7 $V_{m,s}/V_{m,l}$ vs. P plot for polyethylene: (a) branched PE, (b) high-molecular-weight PE, and (c) linear PE; $V_{m,s}/V_{m,l} = 1.0$ gives the critical pressure for the solid-liquid line

Figure 8 A schematic $P-V-T$ diagram for polymer where V_g is the volume along $T_{\rm g}$, $V_{\rm m,s}$ and $V_{\rm m,j}$ are volumes along $T_{\rm m}$ for solid and liquid phase, respectively. The symbol a is the *P-V* isotherm at temperature of T_{g} for 1 bar; b is the P-V isotherm at T_{m} for 1 bar: $V(P, 0)$ is the $P-V$ isotherm at $0K$

Table 4 Values of $m_{v,x}$, $P_{v,x}$ and $A_{v,x}$ in equation (8)

System	$m_{y,x}$	$P_{y,x}$ (bar)	$A_{y,x}$	$V_{y,x} (P = 1)$	χ	P_0 (bar)	Ref.
Ar^{a}	0.137	2030	0.3431	0.6835		451	3
	0.154	4760	0.2673	0.6093	S	451	3
$n-H_2^a$	0.252	1150	0.1123	7.584		4733	9
	0.310	4120	0.0599	7.247	$\bf S$	4733	9
N_2	0.162	2115	0.2892	1.149		77.5	16
	0.182	4020	0.2208	1.061	s	77.5	16
Methane	0.152	2480	0.3048	2.207		$\bf{0}$	16
	0.157	3970	0.2723	2.048	${\bf S}$	$\mathbf{0}$	16
Linear PE	0.0845	1130	0.538	1.228		400	20
	0.0171	-310	0.908	1.080	S	600	20
Branched PE	0.1775	4300	0.228	1.240			20
	0.1055	5300	0.400	1.161	s	600	20
High- M_w PE	0.0698	1060	0.608	1.251		200	20
	0.0205	-131	0.876	1.144	S	800	20
PP	0.1037	932	0.492	1.302		ŧ	28
	0.2285	5640	0.139	1.182	S		28
PET	0.0606	1991	0.2245	0.761			22
	0.0387	251	0.8075	0.851	${\bf S}$		22
Poly(but-1-ene)	0.0866	868	0.557	1.246	1		28
	0.109	1795	0.441	1.158	s		28
PS	0.0966	2740	0.4637	0.9673	g		17
PMMA ^a	0.0994	2880	0.4532	0.8620	g	1	20
PSF	0.0760	5100	0.5228	0.8376	g		21

"The P-V isotherms for Ar and n-H₂ are $0.5647/V = 0.2596(P + 4800)^{0.159}$ at 4.0 K for Ar and $11.24/V = 0.233(P + 579)^{0.233}$ at 4 K for n-H₂, while that for PMMA is $0.8620/V = 0.4531(P + 2880)^{0.0994}$ at 374.1 K²⁰

experimentally that the $V_{g}-P_{g}$ line is nearly equal to the *V-P* isotherm at temperature T_{g} at 1 bar in PS¹⁷ and $poly(cyclohexyl$ methacrylate)²⁰ and the V_m-P_m line for T_m is nearly equal to the *V-P* isotherm at temperature $4\ddot{K}$ in n-H₂ and Ar (see *Table 4*). These results suggest the existence of a flat strip region in the $P-V-T$ surface in the vicinity of T_g and T_m as is shown in *Figure 8*.

The Gibbs free energy can be determined using equation (2) for a solid and liquid by:

$$
G = \int V dP = [V_x(1, T)/(1 - m_x)A_x]
$$

× [P + P_x(T)]^{1 - m_x} + g(T) (9)

where $g(T)$ is a function of temperature. It is speculated from this work that the Gibbs free energy function, equation (9), does not change over the temperature region including T_g because m_x is almost constant over $T_{\rm g}$ although $P_{\rm x}$ changes discontinuously with increasing temperature at T_g . On the other hand, the Gibbs free energy function does change at T_m , at which m_1 changes discontinuously. The result shows the validity of the Ehrenfest equation on the phase transition. It is also suggested that the $P-V-T$ surface over $T_{\rm g}$ is originally a smooth surface and suddenly a part of the *P-V-T* surface slipped down along the T_{g} line at T_{g} . Therefore the Gibbs free energy function below T_g is the same as that above T_g and a distortion in the $P-V-T$ surface near T_g is taken as the trace of slipping.

It is very interesting to refer to theoretical and experimental work on the transition temperature and its pressure dependence. Lindemann³⁷ postulates that melting occurs when the amplitude of atomic vibration has become about 10% of the distance of separation of atomic centres at OK. The invariance of the liquid order along the freezing curve has been discussed through the pair distribution function at different temperatures using the Monte Carlo method⁵. The results can be compared with values of $F_m = 5.8\%$ for H₂ and 8.82% for Ar, which are independent of pressure approximately. It is speculated from this work, that a solid-liquid critical point may exist in a semicrystalline polymer such as branched PE at 200°C, 3300bar, in high-molecular-weight PE at 380°C, 8700 bar and in linear PE at 400°C, 14 400 bar, where the critical temperatures are estimated from a linear relation between T_m and P_m and the critical pressure is estimated from *Figure 7.*

REFERENCES

- 1 Bridgman, P. W. *Phys. Rev.* 1934, **46**, 930
2 Crawford, R. K. and Daniels, W. B. *Phys.*
- 2 Crawford, R. K. and Daniels, W. B. *Phys. Rev. L ett.* 1968, 21, 367
- 3 Crawford, R. K. and Daniels, *W. B. J. Chem. Phys.* 1969, 50, 3171
- 4 Cheng, V. M., Daniels, W. B. and Crawford, R. K. *Phys. Lett.* 1973, 43A, 109
- 5 Zha, C.-S., Boehler, R., Young, D. A. and Ross, *M. J. Chem. Phys.* 1986, 85(2), 1034
- 6 Mills, R. L. and Grilly, E. R. *Phys. Rev.* 1955, 99, 480
- 7 Cook, G. A., Dwyer, R. F., Berwaldt, O. E. and Nevins, H. J.
- *Chem. Phys.* 1965, 43, 1313 8 Mills, R. L., Liebenberg, D. H., Bronson, J. C. and Schmidt, *L. C. J. Chem. Phys.* 1977, 66, 3076
- 9 Liebenberg, D. H., Mills, R. L. and Bronson, J. C. *Phys. Rev.* (B) 1978, 18, 4526
- 10 Driessen, A., de Waal, J. A. and Silvera, *I. F. J. Low Temp. Phys.* 1979, 34, 255
- 11 Goldstein, L. *Phys. Rev.* 1961, 122, 726
12 Hanson, H. N., Berthold, J. E., Seidel. 0
- Hanson, H. N., Berthold, J. E., Seidel, G. M. and Maris, H. J. *Phys. Rev. (B)* 1976, 14, 1911
- 13 Mills, R. L., Liebenberg, D. H. and Bronson, J. C. *Phys. Rev.* (B) 1980, 21, 5137
- 14 Young, D. A., McMahan, A. K. and Ross, M. *Phys. Rev. (B)* 1981, 24, 5119
- 15 Grilly, E. R. and Mills, R. L. *Phys. Rev.* 1957, 105, 1140
- 16 Cheng, V. M., Daniels, W. B. and Crawford, R. K. *Phys. Rev.* (B) 1975, 11, 3972
- 17 Quach, A. and Simha, *R. J. Appl. Phys.* 1971, 42, 4592
- 18 Oels, H.-J. and Rehage, G. *Macromolecules* 1977, 10, 1036 Stevens, J. R., Coakley, R. W., Chau, K. W. and Hunt, J. L. J.
- *Chem. Phys.* 1986, 84(2), 1006
- 20 Olabisi, O. and Simha, R. *Macromolecules* 1975, 8, 206
- 21 Zoller, *P. J. Polym. Sci., Polym. Phys. Edn.* 1978, 16, 1261
- 22 Zoller, *P. J. Macromol. Sci.-Phys. (B)* 1980, 18(3), 555
- 23 Zoller, *P. J. Polym. Sci., Polym. Phys. Edn.* 1982, 20, 1453
- 24 Gee, G. *Polymer* 1966, 7, 177
- 25 Zoller, *P. J. Appl. Polym. Sci.* 1979, 23, 1051
- 26 Zoller, *P. J. Appl. Polym. Sci.* 1977, 21, 3129
- 27 Zoller, *P. J. Appl. Polym. Sci.* 1978, 22, 633
- 28 Zoller, *P. J. Appl. Polym. Sci.* 1979, 23, 1057
- 29 Alder, B. J. and Wainwright, T. E. *Phys. Rev.* 1962, 127, 359
- 30 Longuet-Higgins, H. C. and Widom, B. *Mol. Phys.* 1964, 8, 549
- 31 Rowlinson, J. S. *Mol. Phys.* 1964, 8, 107
- 32 O'Reilly, *J. M. J. Polym. Sci.* 1962, 57, 429
- 33 Goldstein, *M. J. Chem. Phys.* 1963, 39, 3369
- 34 Saeki, S., Tsubokawa, M. and Yamaguchi, T. *Polymer* 1989, 30, 672
- 35 Saeki, S., Tsubokawa, M., Yamanaka, J. and Yamaguchi, T. *Polymer* in press
- 36 Richardson, M. J. and Savill, N. G. *Polymer* 1977, 18, 3
- 37 Lindemann, F. A. *Phys. Z.* 1910, 11,609
- 38 Streett, W. B. *Physica* 1974, 76, 59